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Abstract
In this work we solve the 19-vertex models with the use of algebraic
Bethe ansatz for diagonal reflection matrices (Sklyanin K-matrices). The
eigenvectors, eigenvalues and Bethe equations are given in a general form.
Quantum spin chains of spin one derived from the 19-vertex models were also
discussed.

PACS numbers: 05.20.−y, 05.50.+q, 04.20.Jb

1. Introduction

Classical statistical systems in two spatial dimensions on a lattice (vertex models) and
one-dimensional quantum spin chain Hamiltonians share a common mathematical structure
responsible for our understanding of these integrable models [1–3]. If the Boltzmann weights
underlying the vertex models are obtained from solutions of the Yang–Baxter (YB) equation
the commutativity of the associated transfer matrices immediately follows, leading to their
integrability.

The diagonalizations of these models can be made with the use of the Bethe ansatz (BA).
It is a powerful method in the analysis of integrable quantum models. There are several
versions: coordinate BA [4], algebraic BA [5], analytical BA [6], etc.

The algebraic BA, also known as the quantum inverse scattering method, is based on the
idea of constructing eigenfunctions of the Hamiltonian via creation and annihilation operators
acting on a reference state. Here one uses the fact that the YB equation can be recast in
the form of commutation relations for the matrix elements of the monodromy matrix which
play the role of creation and annihilation operators. From this monodromy matrix we get the
transfer matrix which commutes with the Hamiltonian.

Imposing appropriate boundary conditions the BA method leads to a system of equations,
the Bethe equations, which are useful in the thermodynamic limit. The energy of the ground
state and its excitations, velocity of sound, etc, may be calculated in this limit. Moreover,
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in recent years we witnessed another very fruitful connection between the BA method and
conformal field theory. Using the algebraic BA, Korepin [7] found various representations
of correlators in integrable models and more recently Babujian and Flume [8] developed a
method from the algebraic BA which reveals a link to the Gaudin model, rendering solutions
of the Knizhnik–Zamolodchikov equations for the SU(2) Wess–Zumino–Novikov–Witten
conformal theory in the quasi-classical limit.

Integrable quantum systems containing Fermi fields have been attracting increasing
interest due to their potential applications in condensed matter physics. The prototypical
examples of such systems are the supersymmetric generalizations of the Hubbard and t–J

models [9]. They lead to a generalization of the YB equation associated with the introduction
of a Z2 grading [10] which leads to the appearance of additional signs in the YB equation.

When considering systems on a finite interval with independent boundary conditions at
each end, we have to introduce reflection matrices to describe such boundary conditions.
Integrable models with boundaries can be constructed out of a pair of reflection K-matrices
K±(u) in addition to the solution of the YB equation. Here K−(u) and K+(u) describe the
effects of the presence of boundaries at the left and right ends, respectively.

Integrability of open chains in the framework of the quantum inverse scattering method
was pioneered by Sklyanin relying on previous results of Cherednik [11]. In [12], Sklyanin
used his formalism to solve, via algebraic BA, the open spin-1/2 chain with diagonal boundary
terms. This model was already solved via coordinate BA by Alcaraz et al [13]. The Sklyanin
original formalism was extended to more general systems by Mezincescu and Nepomechie in
[14]. Doikou in [43] using the fusion technique and the analytical Bethe ansatz computed the
K-matrix and solved the A

(1)
N−1-spin chain models. More recently in [44] the classification of

the rational K-matrices was extended for the series so(m), sp(n) and osp(m|n) models.
In this paper we consider the algebraic version of the BA for the three-state vertex models

with a class of boundary terms derived from diagonal reflection K-matrices. These models are
well known in the literature: the Zamolodchikov–Fateev (ZF) model or A

(1)
1 model [15], the

Izergin–Korepin (IK) model or A
(2)
2 model [16] and two Z2-graded models, named the sl(2|1)

model and the osp(1|2) model [17].
In [27], Fan used the algebraic Bethe ansatz to study the IK model with a specific K(u)-

diagonal reflection matrix. The main goal in this paper is to generalize the work of Fan to all
19-vertex models and for diagonal reflection matrices.

We introduce the algebraic tools in section 2 where we define the models to be studied
and the diagonal reflection matrices related to them. In section 3, we apply the algebraic BA
method with periodic boundary condition to all models present in section 2. Many identities
and relations that appear in the case of a periodic boundary condition will be useful in the next
step. In section 4, we study the case with reflection conditions and the energy spectra and the
corresponding Bethe equations are presented in a general form. In section 5 we studied some
models derived from the 19-vertex models. These spin-1 quantum chains were classified by
Idzumi et al in [32]. The conclusions are in section 6. In appendix A we discuss the model IK
with the R(u) presented in the original paper of Fan [27] and show that the results present in
[27] are reproduced as a special case for our formulation.

2. 19-vertex models and reflection matrices

Before we begin to study the algebraic Bethe ansatz with reflection condition, we will need
to define the algebraic structure for the models that will be studied. In this section, we will
briefly discuss these models and give the reflection matrices for them. A detailed discussion
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about the trigonometric reflection matrices for all 19-vertex models can be found in [30] (see
also [44] for the classification of the rational K-matrices for osp(m|n) models).

To determine an integrable vertex model on a lattice it is first necessary that the bulk
vertex weights be specified by an R-matrix R(u), where u is the spectral parameter. It acts
on the tensor product V 1 ⊗ V 2 for a given vector space V and satisfies a special system of
functional equations, the YB equation

R12(u)R13(u + v)R23(v) = R23(v)R13(u + v)R12(u) (1)

in V 1 ⊗ V 2 ⊗ V 3, where R12 = R ⊗ 1,R23 = 1 ⊗ R, etc.
An R matrix is said to be regular if it satisfies the property R(0) = P , where P is the

permutation matrix in V 1 ⊗ V 2: P(|α〉 ⊗ |β〉) = |β〉 ⊗ |α〉 for |α〉, |β〉 ∈ V . In addition, we
will require [14] that R(u) satisfies the following properties

regularity : R12(0) = f (0)1/2P12

unitarity : R12(u)Rt1t2
12 (−u) = f (u)

PT-symmetry : P12R12(u)P12 = Rt1t2
12 (u)

crossing-symmetry : R12(u) = U1Rt2
12(−u − ρ)U−1

1

(2)

where f (u) = x1(u)x1(−u), ti denotes transposition in the space i , ρ is the crossing parameter
and U determines the crossing matrix

M = UtU = Mt. (3)

Note that unitarity and crossing-symmetry together imply the useful relation

M1Rt2
12(−u − ρ)M−1

1 Rt1
12(u − ρ) = f (u). (4)

The boundary weights then follow from K-matrices which satisfy boundary versions of
the YB equation [12, 14]: the reflection equation

R12(u − v)K−
1 (u)Rt1t2

12 (u + v)K−
2 (v) = K−

2 (v)R12(u + v)K−
1 (u)Rt1t2

12 (u − v) (5)

and the dual reflection equation

R12(−u + v)
(
K+

1

)t1
(u)M−1

1 Rt1t2
12 (−u − v − 2ρ)M1

(
K+

2

)t2
(v)

= (
K+

2

)t2
(v)M1R12(−u − v − 2ρ)M−1

1

(
K+

1

)t1
(u)Rt1t2

12 (−u + v). (6)

In this case there is an isomorphism between K− and K+:

K−(u) :→ K+(u) = K−(−u − ρ)tM. (7)

Therefore, given a solution to the reflection equation (5) we can also find a solution to the dual
reflection equation (6).

In the framework of the quantum inverse scattering method, we define the Lax operator
from the R-matrix as Laq(u) = Raq(u), where the subscript ‘a’ represents auxiliary space,
and ‘q’ represents quantum space. The row-to-row monodromy matrix T (u) is defined as a
matrix product over the N operators on all sites of the lattice,

T (u) = LaN(u)LaN−1(u) · · ·La1(u). (8)

The main result is the following: if the boundary equations are satisfied, then the Sklyanin
transfer matrix

t (u) = Tra(K
+(u)T (u)K−(u)T −1(−u)) (9)

forms a commuting family

[t (u), t (v)] = 0 ∀u, v. (10)
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The commutativity of t (u) can be proved by using the unitarity and crossing-unitarity
relations, the reflection equation and the dual reflection equation. It implies integrability of
an open quantum spin chain whose Hamiltonian (with K−(0) = 1) can be obtained as

H =
N−1∑
k=1

Hk,k+1 +
1

2

dK−
1 (u)

du

∣∣∣∣
u=0

+
tr0 K+

0 (0)HN,0

tr K+(0)
(11)

and whose two-site terms are given by

Hk,k+1 = d

du
Pk,k+1Rk,k+1(u)

∣∣∣∣
u=0

(12)

in the standard fashion.
Here we will extend our discussions to include the Z2-graded vertex models. Therefore,

let us describe some useful information about the graded formulation.
Let V = V0 ⊕ V1 be a Z2-graded vector space where 0 and 1 denote the even and odd

parts, respectively. Multiplication rules in the graded tensor product space V
s⊗ V differ from

the ordinary ones by the appearance of additional signs. The components of a linear operator

A
s⊗ B ∈ V

s⊗ V result in matrix elements of the form

(A
s⊗ B)

γ δ

αβ = (−)p(β)(p(α)+p(γ ))Aαγ Bβδ. (13)

The action of the graded permutation operator P on the vector |α〉 s⊗ |β〉 ∈ V
s⊗ V is defined

by

P|α〉 s⊗ |β〉 = (−)p(α)p(β)|β〉 s⊗ |α〉 �⇒ (P)
γ δ

αβ = (−)p(α)p(β)δαδδβγ . (14)

The graded transposition ‘st’ and the graded trace ‘str’ are defined by

(Ast)αβ = (−)(p(α)+1)p(β)Aβα str A =
∑

α

(−)p(α)Aαα (15)

where p(α) = 1 (0) if |α〉 is an odd (even) element.
For the graded case the YB equation and the reflection equation remain the same as above.

We only need to change the usual tensor product to the graded tensor product.
In general, the dual reflection equation which depends on the unitarity and cross-unitarity

relations of the R-matrix takes different forms for different models. For the models considered
in this paper, we write the graded dual reflection equation in the following form [18]:

Rst1st2
21 (−u + v)

(
K+

1

)st1
(u)M−1

1 Rst1st2
12 (−u − v − 2ρ)M1

(
K+

2

)st2
(v)

= (
K+

2

)st2
(v)M1Rst1st2

12 (−u − v − 2ρ)M−1
1

(
K+

1

)st1
(u)Rst1st2

21 (−u + v) (16)

and will choose a common parity assignment: p(1) = p(3) = 0 and p(2) = 1, the BFB
grading.

Now, using the relations

Rst1st2
12 (u) = I1R21(u)I1 Rst1st2

21 (u) = I1R12(u)I1 and IK+(u)I = K+(u)

(17)

with I = diag(1,−1, 1) and the property [M1M2,R(u)] = 0 we can see that the isomorphism
(7) holds with the BFB grading.
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The three-state vertex models that we will consider are the Zamolodchikov–Fateev (ZF)
model, the Izergin–Korepin (IK) model, the sl(2|1) model and the osp(1|2) model. Their
R-matrices have a common form

R(u) =



x1

x2 x5

x3 x6 x7

y5 x2

y6 x4 x6

x2 x5

y7 y6 x3

y5 x2

x1


(18)

satisfying properties (1)–(4) together with their graded version.

2.1. The Zamolodchikov–Fateev model

The simplest three-state vertex model is the ZF 19-vertex [15] or the A
(1)
1 model the spin-1

representation [20] and can be constructed from the six-vertex model using the fusion
procedure. The R-matrix which satisfies the YB equation (1) has the form (18) with

x1(u) = sinh(u + η) sinh(u + 2η) x2(u) = sinh u sinh(u + η)

x3(u) = sinh u sinh(u − η) x4(u) = sinh u sinh(u + η) + sinh η sinh 2η

y5(u) = x5(u) = sinh(u + η) sinh 2η y6(u) = x6(u) = sinh u sinh 2η

y7(u) = x7(u) = sinh η sinh 2η.

(19)

This R-matrix is regular and unitary, with f (u) = x1(u)x1(−u), P - and T-symmetric and
crossing-symmetric with M = 1 and ρ = η. The most general diagonal solution for K−(u)

has been obtained in [19] and is given by

K−(u, β11) =
k−

11(u)

1
k−

33(u)

 (20)

with

k−
11(u) = − β11 sinh u + 2 cosh u

β11 sinh u − 2 cosh u
k−

33(u) = − β11 sinh(u + η) − 2 cosh(u + η)

β11 sinh(u − η) + 2 cosh(u − η)
(21)

where β11 is the free parameter. By automorphism (7 ) the solution for K+(u) follows

K+(u, α11) = K−(−u − ρ, α11) =
k+

11(u)

1
k+

33(u)

 (22)

with

k+
11(u) = −α11 sinh(u + η) − 2 cosh(u + η)

α11 sinh(u + η) + 2 cosh(u + η)

k+
33(u) = − α11 sinh u + 2 cosh u

α11 sinh(u + 2η) − 2 cosh(u + 2η)

(23)

where α11 is another free parameter.
For a particular choice of boundary terms, the ZF spin chain has the quantum group

symmetry, i.e. if we choose ξ∓ → ∞ (β11 = 2 coth ξ− and α11 = 2 coth ξ+), then the spin
chain Hamiltonian (19) has Uq(su(2))-invariance [19].
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2.2. The Izergin–Korepin model

The solution of the YB equation corresponding to A
(2)
2 in the fundamental representation was

found by Izergin and Korepin [16]. The R-matrix has the form (18) with non-zero entries

x1(u) = sinh(u − 5η) + sinh η x2(u) = sinh(u − 3η) + sinh 3η

x3(u) = sinh(u − η) + sinh η x4(u) = sinh(u − 3η) − sinh 5η + sinh 3η + sinh η

x5(u) = −2 e−u/2 sinh 2η cosh
(u

2
− 3η

)
y5(u) = −2 eu/2 sinh 2η cosh

(u

2
− 3η

)
x6(u) = 2 e−u/2+2η sinh 2η sinh

(u

2

)
y6(u) = −2 eu/2−2η sinh 2η sinh

(u

2

)
x7(u) = −2 e−u+2η sinh η sinh 2η − e−η sinh 4η

y7(u) = 2 eu−2η sinh η sinh 2η − eη sinh 4η.

(24)

This R-matrix is regular and unitary, with f (u) = x1(u)x1(−u). It is PT-symmetric and
crossing-symmetric, with ρ = −6η − iπ and

M =
e2η

1
e−2η

 . (25)

Diagonal solutions for K−(u) have been obtained in [22]. It turns out that there are three
solutions without free parameters, being K−(u) = 1,K−(u) = F + and K−(u) = F−, with

F± =
e−uf (±)(u)

1
euf (±)(u)

 (26)

where we have defined

f (±)(u) = cosh(u/2 − 3η) ± i sinh(u/2)

cosh(u/2 − 3η) ∓ i sinh(u/2)
. (27)

By automorphism (7), three solutions K+(u) follow as K+(u) = M,K+(u) = G+ and
K+(u) = G−, with

G± =
eu−4ηg(±)(u)

1
e−u+4ηg(±)(u)

 (28)

where we have defined

g(±)(u) = cosh(u/2 − 3η) ± i sinh(u/2)

cosh(u/2 − 3η) ∓ i sinh(u/2 − 6η)
. (29)

Finally, we note that it is interesting to reformulate the Boltzmann weights of the IK
model by the following transformation:

R(u, η) → R′(u, η) = 1

2i
R

(
2u,−η − i

π

2

)
. (30)

This R′ matrix differs from that given in [26] by a gauge transformation. It is regular
and unitary, with f ′(u) = x ′

1(u)x ′
1(−u), PT -symmetric and crossing-unitarity with M ′ =

diag(−e−2η, 1,−e2η) and ρ ′ = 3η. After the gauge transformation R′′
12(u) = V1R′

12(u)V −1
1

with V = diag(e−u, 1, eu), we can see that M ′′ = diag(−e4η, 1,−e−4η) and ρ ′′ = ρ ′. In this
case the solution (F +,G+) can be written as

F ′′− = diag

(
1,− sinh

(
u − 3

2η
)

sinh
(
u + 3

2η
) , 1

)
G′′+ = −diag

(
e4η,

sinh
(
u + 9

2η
)

sinh
(
u + 3

2η
) , e−4η

)
. (31)
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This solution was used by Fan in [27] to find the spectrum of the corresponding transfer matrix
using the algebraic BA for one- and two-particle excited states.

2.3. The sl(2|1) model

The solution of the graded YB equation corresponding to sl(2|1) in the fundamental
representation has the form (18) with non-zero entries [17, 28]:

x1(u) = cosh(u + η) sinh(u + 2η) x2(u) = sinh u cosh(u + η)

x3(u) = sinh u cosh(u − η) x4(u) = sinh u cosh(u + η) − sinh 2η cosh η

y5(u) = x5(u) = sinh 2η cosh(u + η) y6(u) = x6(u) = sinh 2η sinh u

y7(u) = x7(u) = sinh 2η cosh η.

(32)

This R-matrix is regular and unitary, with f (u) = x1(u)x1(−u), P - and T-symmetric and
crossing-symmetric with M = 1 and ρ = η. The graded version of the crossing-unitarity
relation (4) is satisfied with f ′(u) = x1

(
u + iπ

2

)
x1

(−u − iπ
2

)
.

The most general diagonal solution for K−(u) has been presented in [29] and is given by

K−(u, β11) =
k−

11(u)

1
k−

33(u)

 (33)

with

k−
11(u) = − β11 sinh u + 2 cosh u

β11 sinh u − 2 cosh u
k−

33(u) = β11 cosh(u + η) − 2 sinh(u + η)

β11 cosh(u − η) + 2 sinh(u − η)
(34)

where β11 is the free parameter. Due to automorphism (7) the solution for K+(u) is given by
K−(−u − ρ, 1

4α11
)
, i.e.

K+(u, β11) =
k+

11(u)

1
k+

33(u)

 (35)

where

k+
11(u) = α11 cosh(u + η) − 2 sinh(u + η)

α11 cosh(u + η) + 2 sinh(u + η)

k+
33(u) = − α11 sinh u + 2 cosh u

α11 sinh(u + 2η) − 2 cosh(u + 2η)

(36)

and α11 is another free parameter.

2.4. The osp(1|2) model

The trigonometric solution of the graded YB equation corresponding to osp(1|2) in the
fundamental representation has the form (18) with non-zero entries [17]:

x1(u) = sinh(u + 2η) sinh(u + 3η) x2(u) = sinh u sinh(u + 3η)

x3(u) = sinh u sinh(u + η) x4(u) = sinh u sinh(u + 3η) − sinh 2η sinh 3η

x5(u) = e−u sinh 2η sinh(u + 3η) y5(u) = eu sinh 2η sinh(u + 3η)

x6(u) = −e−u−2η sinh 2η sinh u y6(u) = eu+2η sinh 2η sinh u

x7(u) = e−u sinh 2η(sinh(u + 3η) + e−η sinh u)

y7(u) = eu sinh 2η(sinh(u + 3η) + eη sinh u).

(37)
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This R-matrix is regular and unitary, with f (u) = x1(u)x1(−u). It is PT -symmetric and
crossing-symmetric, with ρ = 3η and

M =
e2η

1
e−2η

 . (38)

Diagonal solutions for K−(u) have been obtained in [30] and rational solutions were
obtained in [44]. It turns out that there are three solutions without free parameters, being
K−(u) = 1,K−(u) = F + and K−(u) = F−, with

F± =
∓e−2uf (±)(u)

1
∓e2uf (±)(u)

 (39)

where we have defined

f (+)(u) = sinh(u + 3η/2)

sinh(u − 3η/2)
f (−)(u) = cosh(u + 3η/2)

cosh(u − 3η/2)
. (40)

By the automorphism (7), three solutions K+(u) follow as K+(u) = M,K+(u) = G+ and
K+(u) = G−, with

G± =
∓e2u+4ηg(±)(u)

1
∓e−2u−4ηg(±)(u)

 (41)

where we have defined

g(+)(u) = sinh(u + 3η/2)

sinh(u + 9η/2)
g(−)(u) = cosh(u + 3η/2)

cosh(u + 9η/2)
. (42)

2.5. From non-graded to graded solutions

Besides the R-matrix we also have the R-matrix, which satisfies

R12(u)R23(u + v)R12(v) = R23(v)R12(u + v)R23(u). (43)

Because only R12 and R23 are involved, this equation written in components looks the same
as in the non-graded case. Moreover, the matrix R = PR satisfies the usual YB equation (1)
where P is the non-graded permutation matrix. When the graded permutation matrix P is
used, then R = PR satisfies the graded version of the YB equation.

Multiplying the R-matrix for 19-vertex models (18) by the diagonal matrix 	 = PP =
PP we will get graded R-matrices starting from non-graded R-matrices and vice versa. The
new R-matrix R′ = 	R still has the form (18) but with the change of sign of the fifth row
due to the grading BFB. Now ε = −1 for non-graded models and ε = 1 for graded models.

Let us use this interchange property with the YB solution of the IK model. First we recall
the transformation (30)

R′(u, η) = 1

2i
R

(
2u,−η − i

π

2

)
. (44)

The matrix RIKg(u, η) = 	R′ is a solution of the graded version of the YB equation (1) and
the corresponding vertex model can be named as the graded version of the IK model.

Using the symmetries of the YB solutions for 19-vertex models: x2(u) → ±x2(u) and
x6(u) → ±x6(u) with y6(u) → ∓y6(u), we can see that this model has the same Boltzmann
weights as the osp(1|2) model, except for the presence of the factor ±i in x6(u) and ∓i in
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y6(u). However, this identification is not so trivial due to the change in the signs of the fifth
row of R (BFB grading). Nevertheless, by direct computation we have verified that both
models have the same reflection K-matrices. It means that RIKg(u, η) and the R(u, η) of the
osp(1|2) share the same symmetries.

This situation is also present in the graded version of the ZF model. In order to see that
we have to reformulate conveniently the Boltzmann weights of the ZF model by the following
transformation:

R(u, η) → R′(u, η) = 1

i
R

(
u, η − i

π

2

)
. (45)

The graded version of the ZF model is defined by the following R-matrix:

RZFg(u, η) = 	R′(u, η). (46)

Using again the symmetries of the 19-vertex model we can see, up to a possible canonical
transformation: x6 → x ′

6(u) = ±ix6(u), the non-zero entries of RZFg(u, η) are identified with
the Boltzmann weights of the sl(2|1) model (32). We note that both models have the same
K-matrices and their coordinate Bethe ansatz yield a common spectrum.

It is possible to note that the inverse situation is also true. The non-graded versions of the
graded 19-vertex models are in correspondence with the 19-vertex models of Izergin–Korepin
and Zamolodchikov–Fateev.

In [31] Saleur and Wehefritz-Kaufmann studied the connection between Izergin–Korepin
and osp(1|2) models.

3. The algebraic Bethe ansatz with periodic boundary condition

We will first give a brief review of the algebraic Bethe ansatz for the 19-vertex models with
periodic boundary condition and in the following we will discuss the case with reflection
condition.

The graded quantum inverse scattering method is characterized by the monodromy matrix
T (u) satisfying the equation

R(u − v)[T (u)
s⊗ T (v)] = [T (v)

s⊗ T (u)]R(u − v) (47)

whose consistency is guaranteed by the graded version of the YB equation (43). T (u) is a
matrix in the space V (the auxiliary space) whose matrix elements are operators on the states
of the quantum system (the quantum space, which will also be the space V ). The monodromy
operator T (u) is defined as an ordered product of local operators Ln (Lax operator), on all
sites of the lattice:

T (u) = LN(u)LN−1(u) · · ·L1(u). (48)

The Lax operator on the nth quantum space can be written in the form

Ln = 1

x2



x1 0 0 0 0 0 0 0 0
0 x2 0 x5 0 0 0 0 0
0 0 x3 0 x6 0 x7 0 0
0 y5 0 x2 0 0 0 0 0
0 0 y6 0 x4 0 x6 0 0
0 0 0 0 0 x2 0 x5 0
0 0 y7 0 y6 0 x3 0 0
0 0 0 0 0 y5 0 x2 0
0 0 0 0 0 0 0 0 x1


=


L

(n)
11 (u) L

(n)
12 (u) L

(n)
13 (u)

L
(n)
21 (u) L

(n)
22 (u) L

(n)
23 (u)

L
(n)
31 (u) L

(n)
32 (u) L

(n)
33 (u)

 .

(49)
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Note that L
(n)
αβ (u), α, β = 1, 2, 3 are 3 × 3 matrices acting on the nth site of the lattice. It

means that the monodromy matrix has the form

T (u) =
A1(u) B1(u) B2(u)

C1(u) A2(u) B3(u)

C2(u) C3(u) A3(u)

 (50)

where

Tij (u) =
3∑

k1,...,kN−1=1

L
(N)
ik1

(u)
s⊗ L

(N−1)
k1k2

(u)
s⊗ · · · s⊗ L

(1)
kN−1j

(u) (51)

i, j = 1, 2, 3. (52)

The vector in the quantum space of the monodromy matrix T (u|z) that is annihilated by
the operators Tij (u), i > j (Ci(u) operators, i = 1, 2, 3) and is also an eigenvector for the
operators Tii(u) (Ai(u) operators, i = 1, 2, 3) is called the highest vector of the monodromy
matrix T (u).

The transfer matrix τ(u) of the corresponding integrable spin model is given by the
supertrace of the monodromy matrix in the space V ,

τ(u) =
3∑

i=1

(ε)p(a)Tii(u) = A1(u) + εA2(u) + A3(u). (53)

We will define the local vacuum in a lattice of N sites as the even (bosonic) completely
unoccupied state in the form

|0〉 = ⊗N
a=1

1
0
0


a

. (54)

Using (51) we can compute the normalized action of the monodromy matrix entries on this
state as

Ai(u)|0〉 = Xi(u)|0〉 Ci(u)|0〉 = 0 Bi(u)|0〉 �= {0, |0〉}
(55)

Xi(u) =
N∏

a=1

xi(u)

x2(u)
i = 1, 2, 3.

Then we have the action of the transfer matrix in the local vacuum in the form

τ(u)|0〉 = 
0(u)|0〉
with the eigenvalues


0(u) = xN
1 + εxN

2 + xN
3 . (56)

The next step in the Bethe ansatz construction is to define the one-particle state. This
state can be written in the form

�1(v) = B1(v)|0〉. (57)

To study the action of τ(u) in this state we need to use some commutation relations (47),
because now we have the operators Ai(u) acting in the form

τ(u)�1(v) = 
1(u, v)�1(v)

= (A1(u) + εA2(u) + A3(u))B1(v)|0〉. (58)
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The necessary commutation relations between the operators Ai(u)B1(v) are

A1(u)B1(v) = z(v − u)B1(v)A1(u) − x5(v − u)

x2(v − u)
B1(u)A1(v) (59)

A2(u)B1(v) = ε
z(u − v)

ω(u − v)
B1(v)A2(u) − z(l − v)

ω(u − v)

1

y(v − u)
B2(v)C1(u)

− ε
y5(u − v)

x2(u − v)
B1(u)A2(v) +

y5(u − v)

x2(u − v)

1

y(u − v)
B2(u)C1(v)

+
1

y(u − v)
B3(u)A1(v) (60)

A3(u)B1(v) = x2(u − v)

x3(u − v)
B1(v)A3(u) − ε

y(u − v)
B3(u)A2(v)

+
x5(u − v)

x3(u − v)
B2(v)C3(u) − y7(u − v)

x3(u − v)
B2(u)C3(v) (61)

where we use the following notation:

z(u) = x1(u)

x2(u)
ω(u) = ε

x1(u)x3(u)

x3(u)x4(u) − x6(u)y6(u)
(62)

y(u) = x3(u)

y6(u)
y(−u) = ε

x3(u)x4(u) − x6(u)y6(u)

x7(u)y6(u) − x3(u)x6(u)
.

The action of the transfer matrix τ(u) in this state �1(v) gives us

τ(u)�1(v) = (A1(u) + εA2(u) + A3(u))

=
[
z(v − u)xN

1 (u) + ε2 z(u − v)

ω(u − v)
xN

2 (u) +
x2(u − v)

x3(u − v)
xN

3 (u)

]
�1(v)

−
[
x5(v − u)

x2(v − u)
xN

1 (u) + ε2 y5(u − v)

x2(u − v)
xN

2 (u)

]
B1(u)|0〉

+ ε

[
1

y(u − v)
xN

1 (v) − 1

y(u − v)
xN

2 (u1)

]
B3(u)|0〉. (63)

Then the eigenvalue has the form


1(u, v) =
[
z(v − u)xN

1 (u) + ε2 z(u − v)

ω(u − v)
xN

2 (u) +
x2(u − v)

x3(u − v)
xN

3 (u)

]
(64)

and the Bethe equations have the form(
x1(v)

x2(v)

)N

= ε2 = 1 (65)

where we use the identity

x5(u)

x2(u)
= −y5(−u)

x2(−u)
.

The next step is to define the two-particle state and for this we can use the fundamental
relation (47) where we will have

B1(u)B1(v) = ω(v − u)

[
B1(v)B1(u) − 1

y(v − u)
B2(v)A1(u)

]
+

1

y(u − v)
B2(u)A1(v).

(66)
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It is easy to observe that (66) satisfies the condition

�2(v2, v1) = ω(v1 − v2)�2(v1, v2). (67)

This gives us the definition for the two-particle state �2(v2, v1) as

�2(v1, v2) = B1(v1)B1(v2)|0〉 − 1

y(v1 − v2)
B2(v1)A1(v2)|0〉. (68)

To study the action of the transfer matrix τ(u) in this state we will need some more
commuting relations:

A1(λ)B2(µ) = x1(µ − λ)

x3(µ − λ)
B2(µ)A1(λ) − x7(µ − λ)

x3(µ − λ)
B2(λ)A1(µ) − ε

x6(µ − λ)

x3(µ − λ)
B1(λ)B1(µ)

A2(λ)B2(µ) = z(λ − µ)z(µ − λ)B2(µ)A2(λ)

+
y5(λ − µ)

x2(λ − µ)

[
B1(λ)B3(µ) − εB3(λ)B1(µ) +

y5(λ − µ)

x2(λ − µ)
B2(λ)A2(µ)

]
A3(λ)B2(µ) = x1(λ − µ)

x3(λ − µ)
B2(µ)A3(λ) − y7(λ − µ)

x3(λ − µ)
B2(λ)A3(µ) − ε

y(λ − µ)
B3(λ)B3(µ)

C1(λ)B1(µ) = εB1(µ)C1(λ) +
y5(λ − µ)

x2(λ − µ)
[A1(µ)A2(λ) − A1(λ)A2(µ)]

C3(λ)B1(µ) = ε
x4(λ − µ)

x3(λ − µ)
B1(µ)C3(λ) − x7(λ − µ)

x3(λ − µ)
B1(λ)C3(µ)

+
1

y(λ − µ)
[A1(µ)A3(λ) − A2(λ)A2(µ)] +

x6(λ − µ)

x3(λ − µ)
B2(µ)C2(λ)B1(λ)

B1(λ)B2(µ) = 1

z(λ − µ)
B2(µ)B1(λ) +

y5(λ − µ)

x1(λ − µ)
B1(µ)B2(λ)

B1(λ)B3(µ) = εB3(µ)B1(λ) − y5(λ − µ)

x2(λ − µ)
B2(µ)A2(λ) +

x5(λ − µ)

x2(λ − µ)
B2(λ)A2(µ)

B2(λ)B1(µ) = 1

z(λ − µ)
B1(µ)B2(λ) +

x5(λ − µ)

x1(λ − µ)
B2(µ)B1(λ).

In this state we will have the eigenstate as


2(u, v1, v2) = z(v10)z(v20)x
N
1 (u) + ε2 z(v01)

ω(v01)

z(v02)

ω(v02)
xN

2 (u) +
x2(v01)

x3(v01)

x2(v02)

x3(v02)
xN

3 (u) (69)

and the Bethe equations have the form(
x1(va)

x2(va)

)N

= ε2 z(vab)

z(vba)
ω(vba) a �= b = 1, 2 (70)

where vab = va − vb, a �= b = 0, 1, 2, and u0 = u.

Proceeding with the method we will find that for the n-particle state the eigenvalue has
the form [24]


M = x1(u)N
M∏

a=1

z(ua − u) + εM+1x2(u)N
M∏

a=1

z(u − ua)

ω(u − ua)
+ x3(u)N

M∏
a=1

x2(u − ua)

x3(u − ua)
(71)

and the Bethe equations(
x1(ua)

x2(ua)

)N

= εM+1
M∏

b �=a=1

z(ua − ub)

z(ub − ua)
ω(ub − ua) a = 1, 2, . . . ,M. (72)
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Many of the relations found in this section will be used in the next section with reflection
condition. It is important to observe that the method for the resolution of the eigenvalue
problem is the same, but we will have some more complex relations because in the case with
reflection condition we will lose the translational invariance.

4. Algebraic Bethe ansatz with reflection condition

To begin to study the case with reflection condition we need the so-called reflection
equation (5)

R12(u − v)K1(u)R21(u + v)K2(v) = K2(v)R12(u + v)K1(u)R21(u − v). (73)

Assuming that K(u) is a solution of the reflection equation (73) we can define the double-
row monodromy matrix as

U(u) = T (u)K−(u)T −1(−u). (74)

For the algebraic BA with reflection matrices, the fundamental relation has the form

R12(u − v)U1(u)R21(u + v)U2(v) = U2(v)R12(u + v)U1(u)R21(u − v). (75)

From (1) and (75) we can define the transfer matrix as

τ(u) = tr K+U(u). (76)
In section 2 we write the diagonal solutions of (73) for the 19-vertex models and the form

of the K−(u) and K+(u) was also presented.
From (2) we can define the T −1(−u) monodromy matrix as

T −1(−u) = LN,α(u)LN−1,α(u) . . .L1,α(u)

that has a similar form to (50)

T −1(−u) =
A1(u) B1(u) B2(u)

C1(u) A2(u) B3(u)

C2(u) C3(u) A3(u)

 .

It is very easy to show that each entry of T −1(−u) acts in the local vacuum in a form
similar to that of the matrix T (u):

A1(u)|0〉 = xN
1 (u)|0〉 A2(u)|0〉 = xN

2 (u)|0〉 A3(u)|0〉 = xN
3 (u)|0〉

Ci(u)|0〉 = 0

Bi(u)|0〉 �= 0 i = 1, 2, 3.

We can now write (74) as

U(u) = T (u)K−(u)T −1(−u) =
A1(u) B1(u) B2(u)

C1(u) A2(u) B3(u)

C2(u) C3(u) A3(u)

 (77)

where each of the entries of (77) has the form

A1(u) = k−
11A1(u)A1(u) + k−

22B1(u)C1(u) + k−
33B2(u)C2(u)

A2(u) = k−
11C1(u)B1(u) + k−

22A2(u)A2(u) + k−
33B3(u)C3(u)

A3(u) = k−
11C2(u)B2(u) + k−

22C3(u)B3(u) + k−
33A3(u)A3(u)

B1(u) = k−
11A1(u)B1(u) + k−

22B1(u)A2(u) + k−
33B2(u)C3(u)

B2(u) = k−
11A1(u)B2(u) + k−

22B1(u)B3(u) + k−
33B2(u)A3(u)

B3(u) = k−
11C1(u)B2(u) + k−

22A2(u)B3(u) + k−
33B3(u)A3(u)
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C1(u) = k−
11C1(u)A1(u) + k−

22A2(u)C1(u) + k−
33B3(u)C2(u)

C2(u) = k−
11C2(u)A1(u) + k−

22C3(u)C1(u) + k−
33A3(u)C2(u)

C3(u) = k−
11C2(u)B1(u) + k−

22C3(u)A2(u) + k−
33A3(u)C3(u).

To study how the entries of the double-row monodromy matrix (74) act in the local
vacuum we need to use the graded YB equation (43) where we can rewrite the equation in the
form

T −1
2 (v)R12(u − v)T1(u) = T1(u)R12(u − v)T −1

2 (v) (78)

where T1 = I ⊗ T , T2 = T ⊗ I and I represents the 3 × 3 identity matrix. If in the relations
generated in (78) we put v = −u, we will get a set of commuting relations between the entries
of the T (u) and T −1(u) monodromy matrices. For example,

C1(u)B1(u) = −x5(2u)

x1(2u)
A2(u)A2(u) +

x5(2u)

x1(2u)
A1(u)A1(u).

With these relations we can reorder the operators (77) and it is now possible to show that
they act in the local vacuum |0〉 in the form

A1(u)|0〉 = x2N
1 (u)|0〉 A2(u)|0〉 = x2N

2 (u)|0〉 A3(u)|0〉 = x2N
3 (u)|0〉

Ci (u)|0〉 = 0

Bi (u)|0〉 �= 0 i = 1, 2, 3.

Other useful information that we can obtain from (78) is the possibility of rewriting the
diagonal operators Ai (u) in a form that will let us rewrite the commuting relation only with
one wanted term (i.e. only with terms of type B1(v)Ai (u)) and this fact will simplify the
execution of the algebraic Bethe ansatz.

Then, from now on, we will define the diagonal operators as

A1(u) = A1(u)

Ã2(u) = A2(u) − y5(2u)

x1(2u)
A1(u)

Ã3(u) = A3(u) +
y5(2u)x1(2u) − y7(2u)x5(2u)

y5(2u)x5(2u) − εx4(2u)x1(2u)
Ã2(u) − y7(2u)

x1(2u)
A1(u)

or in a more compact form

A1(u) = A1(u)

Ã2(u) = A2(u) + �1A1(u) (79)

Ã3(u) = A3(u) + �2Ã2(u) + �3A1(u)

where

�1 = y5(2u)

x1(2u)
�3 = −y7(2u)

x1(2u)

�2 = y5(2u)x1(2u) − y7(2u)x5(2u)

y5(2u)x5(2u) − εx4(2u)x1(2u)
.

We will write the action of the diagonal operators (79) in the local vacuum as

A1(u)|0〉 = �1(u)|0〉 Ã2(u)|0〉 = �2(u)|0〉
Ã3(u)|0〉 = �3(u)|0〉. (80)

In all the following relations we will use the diagonal operators as written in (79).
As in the case with a periodic boundary condition, we can define the one-particle state as

�1(v) = B1(v)|0〉.
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Now the transfer matrix has the form (9)

τ(u) = k+
11(u)A1(u) + εk+

22(u)A2(u) + k+
33(u)A3(u).

But from (79) we have

τ(u) = k+
11(u)A1(u) + εk+

22(u)(Ã2(u) − �1A1(u)) + k+
33(u)(Ã3(u) − �2Ã2(u) − �3A1(u))

= (
k+

11(u) + εk+
22(u)�1 − k+

33�3
)
A1(u) +

(
εk+

22(u) − k+
33(u) − �2

)
Ã2(u) + k+

33(u)Ã3(u)

or in a more compact notation [27]

τ(u) = w+
1A1(u) + w+

2 Ã2(u) + w+
3 Ã3(u). (81)

To study the action of the transfer matrix (81) in the one-particle state �1(v) we will need
the following relation (note that in the case of a one-particle state we will not need the terms
B2(u)Ci(v), but they will be necessary in the study of states with more particles).

It is important to note that it is straightforward to obtain the commutation relation, because
it is necessary to use in many cases two or more relations from (75) and also to redefine
the diagonal operators from the relations obtained before. After some tedious algebraic
manipulation this construction gives very complicate coefficients for the commutation
relations

A1(u)B1(v) = h(−)

z(+)
B1(v)A1(u) +

(
x5(−)

z(+)x2(−)
− β1

x5(+)

x1(+)

)
B1(u)A1(v)

− x7(+)

x1(+)
B2(u)C3(v) + ε

x6(+)h(−)

x1(+)
B2(v)C1(u)

− x5(+)

x1(+)
B1(u)Ã2(v) +

x6(+)x5(−)

x1(+)x2(−)
B2(u)C1(v)

Ã2(u)B1(v) = 1

z(2v)

(
x5(+)

x1(+)
− �1

x1(+)

x5(+)

y(−)

y(+)

)
B1(u)A1(v)

+
y5(−)

x2(−)

(
�1

y5(+)x7(+)

x2(+)x1(+)
− x5(+)

x2(+)

)
B2(u)C3(v)

− ε
x6(+)x5(−)

x1(+)x2(−)

(
�1 − y5(−)

x2(−)

)
B2(u)c1(v)

+
x5(−)

x2(−)

(
�1

x3(−)

x2(−)
− 1

)
B2(v)C1(u)

+

(
�1

x5(+)

x1(+)
+

1

ω(+)

y5(−)

x2(−)

)
B1(u)Ã2(v)

+
1

z(2v)

y6(−)

x2(−)
B3(u)A1(v) +

t2(+)

w(−)
B1(v)Ã2(u)

+
1

w(−)

(
y5(+)x7(+)

x2(+)x1(+)
− x5(+)

x2(+)

)
B2(v)C3(u) − ε

x6(+)

x2(+)
B3(u)Ã2(v).

And the last diagonal operator Ã3(u) has a more complicated coefficient:

Ã3(u)B1(v) = f1B1(v)Ã3(u) + f2B3(u)Ã2(v) + f3B3(u)A1(v) + f4B1(u)Ã2(v)

+ f5B1(u)A1(v) + f6B2(u)C3(v) + f7B2(u)C1(v)
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where

f1 = x2(−)

x3(−)

(
x2(+)

x3(+)
− ε

y6(+)x6(+)

x3(+)x2(+)

)
f2 = 1

y(−)

(
x2(+)

x3(+)
− ε

y6(+)x6(+)

x3(+)x2(+)

)
+ ε�2

x6(+)

x2(+)

f3 = x6(+)

x2(+)

(
x2

2(−)

x2
3(−)

− y6(−)x6(−)

x2
3(−)

)
+ �2

(
x6(−)x3(+)

x3(−)x2(+)
+ �1(2v)

x6(+)

x2(+)

)
f4 = t (+)

y5(−)

x2(−)

(
�2 − ε

y6(−)y6(+)

x3(−)x3(+)

)
− y7(−)

x3(−)
l(+)

f5 = �2

[
y5(+)

x1(+)

(
h(−)

w(−)
− y5(−)x5(−)

x2
2(−)

)
− y5(−)

x2(−)
t (+)t (−)β1

]

+
y7(+)x2(+)

x3(+)x1(+)

(
y5(−)h(−)

x3(−)
− y7(−)x5(−)

x3(−)x2(−)

)
+

y6(+)y5(+)

x3(+)x1(+)

[
−ε

y6(−)

x3(−)

(
h(−)

w(−)
− y5(−)x5(−)

x2(−)x1(−)
− x2(−)

x3(−)

)]
f6 = �2

[
y5(−)y5(+)

x2(−)x2(+)

(
x7(+)

x1(+)
+ �3

)]
− l(+)

(
y7(−)

x3(−)
− ε

y6(−)y5(−)y6(+)

x3(−)x2(−)x3(+)

)
f7 = �2

x6(+)y5(+)

x1(+)x2(+)

(
t(−)

w(−)
+ ε

y5(−)x5(−)

x2
2(−)

)
− �3

x5(−)x6(+)

x2(−)x2(+)

and we introduce the new functions

h(u) = x2
2(u) − x5(u)y5(u)

x1(u)x2(u)
l(u) = y7(u)x5(u) − y5(u)x1(u)

x1(u)x3(u)

t (u) = y5(u)x5(u) − εx1(u)x4(u)

x1(u)x2(u)
.

For the one-particle state we have the eigenvalue


1(u, v) = w+
1
h(−)

z(+)
�1(u) + w+

2
t2(+)

w(−)
�2(u) + w+

3
x2(−)

x3(−)

(
x2(+)

x3(+)
− ε

y6(+)x6(+)

x3(+)x2(+)

)
�3(u)

and the Bethe equations in the form(
�1(v)

�2(v)

)2N

= 1.

To study the two-particle state �2(v1, v2) we need first to define this state, and for this we
will use the fundamental relation (75) where we can find the form for �2(v1, v2) as

�2(v1, v2) = B1(v1)B1(v2) + ε
x6(+)

x2(+)
B2(v1)A2(v2) − ε

x6(−)x3(+)

x3(−)x2(+)
B2(v1)A1(v2)

where we will use the following notation from here xi(−) = xi(u − v), xi(−) = xi(v − u)

and xi(+) = xi(u + v).
As in the case of the periodic boundary condition, this state satisfies the important relation

�2(v2, v1) = w(v1 − v2)�2(v1, v2)

where w(v1 − v2) is the same function defined in the periodic boundary condition (62).
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To study the action of the transfer matrix in the two-particle state it is useful to have some
new relations:

C1(u)B1(v) = x5(+)

x1(+)

(
1 − �1

y5(−)

x2(−)

)
A1(u)A1(v) +

x5(−)

x2(−)z(+)
Ã2(v)A1(u)

+ �1(2v)

(
x5(−)x2(+)

x2(−)x1(+)

)
A1(v)A1(u) + ε

x4(+)

x1(+)
B1(v)C1(u)

+ ε
x5(−)x6(+)

x2(−)x1(+)
B3(v)C1(u) +

x5(+)

x1(+)
B2(v)C2(u)

− ε
y5(−)x6(+)

x2(−)x1(+)
B3(u)C1(v) − x7(+)

x1(+)
B3(u)C3(v)

− x5(+)

x1(+)
Ã2(u)Ã2(v) − �1(2u)

x5(+)

x1(+)
A1(u)Ã2(v)

C3(u)B1(v) = εf (+)

(
x4(−)

x6(−)
+

y6(−)

x3(−)

)
B3(v)C3(u) + ε

x4(−)

x6(−)
f (+)B3(u)C3(v)

− x4(−)y5(+)x4(+)

x6(−)x2(+)x1(+)
B1(u)C1(v) + t (+)

(
x4(−)

x6(−)
+ ε

y6(−)

x3(−)

)
B1(u)C1(v)

+
y6(−)

x3(−)
t (+)B1(v)C1(u) − y6(−)

x6(−)
B1(u)C3(v) + t (+)

x4(−)

x6(−)
Ã2(u)Ã2(v)

+ ε
x4(−)y5(+)x5(+)

x6(−)x2(+)x1(+)
B2(v)C2(u) + t (+)

(
x4(−)

x6(−)
− y6(−)

x3(−)

)
B2(v)C2(u)

− ε
x6(+)

x2(+)
Ã3(u)Ã2(v) + ε

(
x6(−)x3(+)

x3(−)x2(+)
− �(2v)

x6(+)

x2(+)

)
Ã3(u)A1(v)

B1(u)B2(v) =
(

x5(+)

x3(+)
− y5(+)y7(+)

x3(+)x1(+)

)
B2(v)B1(u)

− ε
x6(+)

x2(+)
B2(u)B3(v) +

x5(−)x3(+)

x2(−)x2(+)
B2(u)B1(v).

For this state we have the eigenvalues given as


2(u, v1, v2) = w+
1

[
x2(u + v1)

x1(u + v1)

(
x5(u − v1)y5(u − v1)

x1(u − v1)x2(u − v1)
+

x2(u − v1)

x1(u − v1)

)
× x2(u + v2)

x1(u + v2)

(
x5(u − v2)y5(u − v2)

x1(u − v2)x2(u − v2)
+

x2(u − v2)

x1(u − v2)

)]
�1(u)

+ εw+
2

[
z(u − v1)

ω(u − v1)

(
x4(u + v1)

x2(u + v1)
− ε

y5(u + v1)x5(u + v1)

x2(u + v1)x1(u + v1)

)
× z(u − v2)

ω(u − v2)

(
x4(u + v2)

x2(u + v2)
− ε

y5(u + v2)x5(u + v2)

x2(u + v2)x1(u + v2)

)]
�2(u)

+ w+
3

[
x2(u − v1)

x3(u − v1)

(
x2(u + v1)

x3(u + v1)
− ε

y6(u + v1)x6(u + v1)

x3(u + v1)x2(u + v1)

)
× x2(u − v2)

x3(u − v2)

(
x2(u + v2)

x3(u + v2)
− ε

y6(u + v2)x6(u + v2)

x3(u + v2)x2(u + v2)

)]
�3(u)
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and the Bethe equations(
�1(vi)

�2(vi)

)2N

= −ε
w+

1

w+
2

{(
x1(−)

x3(−)x2
2(+)

)
×

((
x4(−)x3(−) − x6(−vj )y6(−)

)
(x2(−)x2(−) − x5(−)y5(−))

(εy5(+)x5(+) − x4(+)x1(+))

)}
xk(−) = xki(vi − vj ) xk(+) = xi(vi + vj ) i �= j = 1, 2.

Proceeding with the constructive method we will find that for a general n-particle state
�n(v1, v2, . . . , vn) we have for the eigenvalues:


 = w+
1

n∏
i=1

x2(+)

x1(+)

(
x5(−)y5(−)

x1(−)x2(−)
+

x2(−)

x1(−)

)
�1(u)

+ εn+1w+
2

n∏
i=1

z(−)

ω(−)

(
x4(+)

x2(+)
− ε

y5(+)x5(+)

x2(+)x1(+)

)
�2(u)

+ w+
3

n∏
i=1

x2(−)

x3(−)

(
x2(+)

x3(+)
− ε

y6(+)x6(+)

x3(+)x2(+)

)
�3(u). (82)

And the Bethe equations can be written as(
�1(vi)

�2(vi)

)2N

= −εn+1
n∏

i=1
j �=i

w+
1

w+
2

{(
x1(−)

x3(−)

)

×
(

(x4(−)x3(−) − x6(−)y6(−))

(x2(−)x2(−) − x5(−)y5(−))

(
εy5(+)x5(+) − x4(+)x1(+)

x2(+)x2(+)

))}
(83)

i = 1, . . . , n.

It is important to note that the mapping between the 19-vertex models presented in
section 2 can be very useful to obtain one solution from the others.

5. Spin one chains derived from 19-vertex models

In [32] quantum spin chains of spin one derived from the 19-vertex models were classified.
One of these models is the ZF model (solution 10 for the trigonometric version and
solution 7 for the rational version), another is the su(3)-invariant model [33] that was obtained
in [34] (solution 4). Solution 7 was obtained in [35, 36]. Solution 5 appears in [37] and
solution 6 in [38]. Solutions 2, 3, 8 and 9 were new. From these new solutions we have
solvable t–J models (solutions 1–4) as special cases. The following tables give the classified
solutions (in the tables we have that A,O,C are arbitrary constants and v ≡ eu, ik = ±1,

a2 + a − 1 = 0, b2 − (a − 1)/b − (a − 1)2 = 0):

Vertex weight #1 #2 #3

x1(u) eAu cosh(u) + cosh(n) sinh(u) cosh(u) + cosh(n) sinh(u)

x2(u) 0 sinh(u) sinh(n) sinh(u) sinh(n)

x3(u) 0 0 0
x4(u) eOu cosh(u) + cosh(n) sinh(u) cosh(u) − cosh(n) sinh(u)

x5(u) 1 1 1
x6(u) 0 0 0
x7(u) eCu cosh(u) + cosh(n) sinh(u) cosh(u) + cosh(n) sinh(u)
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and

#4 #5 #6 #7 #8 #9

1 + i1u 1 1 1 + 3
2 u + 1

2 u2 1
3 v(4 − v2) v

i4u 0 0 i2
1
2 (−u + u2) 0 0

i2u
(a−1)(1−eu)
1+(a+b−1)eu

−eu+e2u

2−eu
1
2 (u + u2) − 2

3 v(1 − v4) − 1−v4

v3
(

1− 3+
√

5
2 v4

)
1 + i3u 1 + b b + eu 1− 1

2 u + 1
2 u2 3 1+

√
5

2

(
3−√

5
2 + −1+

√
5

2 v4
)

v
(
−1+ 3+

√
5

2 v4
)

1 1 1 1 − u 1
3 (4 − v4) 1

1 ±b ±b i1u ±
√

2
3 v2(1 − v4) ±

(
1+

√
5

2

)1/2
v.b

1 1 + b b + eu 1 1
3 v(2 + v4) b + 1

v3

The weights of solution 10 are the trigonometric Fadeev–Zamolodchikov model as
described in session 2.

From these models one special model, the su(3)-spin model, was studied in detail in [39].
In [40] the model was studied using the so-called thermodynamic Bethe ansatz, the model can
be obtained as a limit, n → 0, of the A2

2 model (Izergin–Korepin model). The model was also
studied with the nested Bethe ansatz formalism in [41] and with the functional Bethe ansatz
in [42] (a extension of this work using the fusion techniques for all A1

n−1 models was studied
in [43]).

In special interest we have studied this model with boundary conditions. In [43], Doikou
solved the model with the fusion technique and with the functional Bethe ansatz approach.

The su(3)-invariant spin model is defined by the R(u)-matrix

R(u)jj,jj = u + n

R(u)jk,jk = u j �= k

R(u)jk,kj = n j �= k

1 � j, k � 3.

This model is a 15-vertex model, and as noted before, it can be obtained as a special limit
of the Izergin–Korepin model and corresponds to the solution 4 of the above table. In [43] the
Bethe equations obtained have the form(

vi + n

vi − n

)2N (
2vi − n

2vi + n

)
=

n∏
i �=j=1

(
vj − vi − n

vj + vi + n

) (
vj − vi + 2n

vj − vi − 2n

) (
vj + vi − n

vj + vi + n

) (
vj + vi + 2n

vj + vi − 2n

)
.

The main problem in solving this model (with this R(u)-matrix) with the approach used
in this paper resides in the fact that the simplicity of the R(u)-matrix causes the loss of many
relations obtained in the reflection equations (75), and in special case we lost the commutation
relation between B1(u)B1(v) and this relation is fundamental to the method used here (from
this relation we derived the exact form of the two-state function �2(u1, u2)). Many of the
commutation relations were obtained as a combination of two or more relations from (75).
Then with the loss of many relations it is not possible to obtain the correct expression for the
commutation relation.
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This model can be solved by using instead the so-called nested Bethe ansatz [39]. In this
approach we define the reference state for some of the elementary operators, and in a second
stage define another reference state for the other elementary operators. With a combination
of these reference states we can find a general state for the transfer matrix. Some problems in
solving this model occur with all t–J models too (see, for example, [45] for the solution of the
15-vertex sl(2|1) model).

We can instead study the rational limit of the IK model using the R(u)-matrix presented
in this paper or the gauge version presented in [27]. In this case, the entries of the R(u)-matrix
have the form

x1(u) = u + 5n x2(u) = −u − 3n x3(u) = u + n x4(u) = −u − 3n

x5(u) = y5(u) = 3n x6(u) = y6(u) = 2nI x7(u) = y7(u) = 4n.

We can write the reflection matrix as

K−(u) =
1 0 0

0 3n−2u
3n+2u

0
0 0 1

 and M =
−ei4n 0 0

0 1 0
0 0 −e−i4n

 .

Using (84) we have that the Bethe equations have the form(
vi + n

vi − n

)2N (
2vi + n

2vi − n

)
=

n∏
i �=j=1

(
vj − vi − n

vj − vi + n

) (
vj − vi + 2n

vj − vi − 2n

) (
vj + vi − n

vj + vi + n

) (
vj + vi + 2n

vj + vi − 2n

)
.

Solutions 5–9 can also be solved with the construction presented in this paper. Solution 10
as noted before is the ZF model and is solved too. The reflection matrices, K(u), will be the
limits of the matrices presented in section 2 and in [42, 43].

Solutions 1–4 have the problem that they represent t–J models and we need to use the
nested Bethe ansatz. A possibility is to try a reformulation of the Boltzmann weights as in the
cases noted in section 2 (IK model), to study the models with nested structure (t–J models) in
a no-nests context. If this is possible we can rewrite the R(u)-matrix in a more appropriate
form preserving the commutation relations necessary to execute the programme.

6. Conclusion

The main goal of this paper was to generalize the work of Fan in [27], based on the IK model,
to all 19-vertex models. Instead, to use a particular choice of the K(u)-matrix as in [27] we
give a formulation for all possible diagonal reflection matrices. The results were also given in
a general form because it is our intention to study these models in the context of the off-shell
Bethe ansatz [8], where in the semi-classical limit we have the possibility of computing exactly
the n-point correlators (see, for example, [46] for the use of this approach in the osp(1|2)

model with periodic boundary condition).
The use of the analytical Bethe ansatz [42–44] and coordinate Bethe ansatz [47] for

diagonal K-matrices gives many useful results about the integrable models with boundary
conditions. A natural extension of these works is the possibility of studying solutions with
non-diagonal K-matrices [48].
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Appendix. The IK model

In this appendix we will use our formulation to generate all the results presented in [27].
To obtain the results found in this appendix it is necessary to work with many trigonometric
relations and it is useful to use the relations between the quotients of amplitudes found in [49]
(the use of mathematical software is also recommended).

It is important to note that using the mapping presented in section 2 between the models
IK and osp(1|2) it is very easy to obtain the solution of the osp(1|2)-model from the results
obtained in the appendix for the IK model.

We first need to define the amplitudes of the IK model as they appear in [27]:

x1(u) = sin(u + 2n) sin(u + 3n) x2(u) = −sin(u) sin(u + 3n)

x3(u) = sin(u) sin(u + n)

x4(u) = −sin(u) sin(u + 3n) + sin(2n) sin(3n)

x5(u) = y5(u) = sin(2n) sin(u + 3n)

x6(u) = −ie−i2n sin(2n) sin(u) y6(u) = iei2n sin(2n) sin(u)

x7(u) = sin(u + 2n) sin(u + 3n) − e−i4n sin(u) sin(u + n)

y7(u) = sin(u + 2n) sin(u + 3n) − ei4n sin(u) sin(u + n).

(84)

The diagonal K(u)-matrix has the form

K(u) = diag

(
1,

sin
(

3
2n − u

)
sin

(
3
2n + u

) , 1

)
and the M-matrix

M =
−iei4n 0 0

0 1 0
0 0 −ie−i4n

 . (85)

Using amplitudes (84) we can write the diagonal operators (79) as

Ã2(u) = A2(u) − sin(2n)

sin(2u + 2n)
A1(u)

Ã3(u) = A3(u) + ie4n sin(2n)

sin(2u + 4n)
Ã2(u) −

(
1 − ei4n sin(2n) sin(2u) sin(2u + n)

sin(2u + 2n) sin(2u + 3n)

)
A1(u).

The action of these operators in the local vacuum (80) gives us the eigenvalue

�1(u) = x2N
1

�2(u) = − sin(2u) sin
(
u + 1

2n
)

sin
(

3
2n + u

)
sin(2u + 2n)

x2N
2

�3(u) = ei4n
2 sin(2u) cosh

(
u + 5

2n
)

sin
(
u + 1

2n
)

sin(2u + 4n) sin(2u + 3n)
x2N

3 .
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We can write the transfer matrix (81) as (ε = 1)

τ (u) = 2 cos
(
u + 1

2n
)

sin(2u + 6n) sin
(
u + 5

2n
)

sin(2u + 2n) sin(2u + 3n)
A1(u)

+
sin(2u + 6n) sin

(
u + 5

2n
)

sin
(
u + 3

2n
)

sin(2u + 4n)
Ã2(u) + e−i4nÃ3(u)

where we use (85) to write the K+(u) in the form (7)

K+(u) =

iei4n 0 0

0
sinh(u+ 9

2 n)
sinh(u+ 3

2 n)
0

0 0 ie−i4n

 .

Inserting the amplitudes in the commuting relation for the diagonal operators we will
have the relations presented in [27] (in the original paper there were only the relations for the
Ai(u)B1(v)). For example,

A1(u)B1(v) = sin(u − v) sin(u + v)

sin(u − v) sin(u + v + 2n)
B1(v)A1(u)

+
sin(2n) sin(2v)

sin(u − v) sin(2v + 2n)
B1(u)A1(v) − sin(2n)

sin(u + v + 2n)
B1(u)Ã2(v).

Note that the commuting relations as presented in [27] are incomplete (the terms of type
Bi(u)Ci(v) vanish when applied in the local vacuum |0〉 then they were not written in the
relations, but these terms are necessary for the study of two or more particle states).

The form of the eigenvalue (82) is


 = w+
1�1(u)

n∏
i=1

sin(u − vi − 2n) sin(u + vi)

sin(u − vi) sin(u + vi + 2n)

+ w+
2�2(u)

n∏
i=1

sin(u − vi − n) sin(u − vi + 2n) sin(u + vi + n) sin(u + vi + 4n)

sin(u − vi) sin(u − vi + 2n) sin(u + vi + 3n)

+ w+
3�3(u)

n∏
i=1

sin(u − vi + 3n) sin(u + vi + 5n)

sin(u − vi + n) sin(u + vi + 3n)

and the Bethe equations (84) have the form(
�1(vi)

�2(vi)

)2N

= −
n∏

i=1
j �=i

sin(vj − vi − n) sin(vj − vi + 2n) sin(vj + vi − n) sin(vj + vi + 2n)

sin(vj − vi − 2n) sin(vj − vi + n) sin(vj + vi − 2n) sin(vj + vi + n)

i = 1, . . . , n
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